Asymptotically regular problems II: Partial Lipschitz continuity and a singular set of positive measure
نویسندگان
چکیده
منابع مشابه
Lipschitz continuity of the solutions to team optimization problems revisited
Sufficient conditions for the existence and Lipschitz continuity of optimal strategies for static team optimization problems are studied. Revised statements and proofs of some results in “Kim K.H., Roush F.W., Team Theory. Ellis Horwood Limited Publishers, Chichester, UK, 1987” are presented. Keywords—Statistical information structure, team utility function, value of a team, Lipschitz continuity.
متن کاملLipschitz Continuity of Optimal Controls for State Constrained Problems
This paper provides new conditions under which optimal controls are Lipschitz continuous for dynamic optimization problems with functional inequality constraints, a control constraint expressed in terms of a general closed convex set and a coercive cost function. It is shown that the linear independence condition on active state constraints, present in the earlier literature, can be replaced by...
متن کاملRegular and Singular Boundary Problems in Maple
We describe a new Maple package for treating boundary problems for linear ordinary differential equations, allowing two-/multipoint as well as Stieltjes boundary conditions. For expressing differential operators, boundary conditions, and Green’s operators, we employ the algebra of integro-differential operators. The operations implemented for regular boundary problems include computing Green’s ...
متن کاملGlobal Lipschitz continuity for minima of degenerate problems
We consider the problem of minimizing the Lagrangian ∫ [F (∇u)+f u] among functions on Ω ⊂ R with given boundary datum φ. We prove Lipschitz regularity up to the boundary for solutions of this problem, provided Ω is convex and φ satisfies the bounded slope condition. The convex function F is required to satisfy a qualified form of uniform convexity only outside a ball and no growth assumptions ...
متن کاملRegular approximations of singular Sturm-Liouville problems
Given any self-adjoint realization S of a singular Sturm-Liouville (S-L) problem, it is possible to construct a sequence {Sr} of regular S-L problems with the properties (i) every point of the spectrum of S is the limit of a sequence of eigenvalues from the spectrum of the individual members of {Sr} (ii) in the case when S is regular or limit-circle at each endpoint, a convergent sequence of ei...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE
سال: 2009
ISSN: 2036-2145,0391-173X
DOI: 10.2422/2036-2145.2009.3.04